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Abstract
Multi-output Gaussian processes (MOGPs) lever-
age the flexibility and interpretability of GPs
while capturing structure across outputs, which is
desirable, for example, in spatio-temporal mod-
elling. The key problem with MOGPs is their
computational scaling O(n3p3), which is cubic
in the number of both inputs n (e.g., time points
or locations) and outputs p. For this reason, a
popular class of MOGPs assumes that the data
live around a low-dimensional linear subspace,
reducing the complexity to O(n3m3). However,
this cost is still cubic in the dimensionality of the
subspace m, which is still prohibitively expen-
sive for many applications. We propose the use
of a sufficient statistic of the data to accelerate
inference and learning in MOGPs with orthogo-
nal bases. The method achieves linear scaling
in m in practice, allowing these models to scale
to large m without sacrificing significant expres-
sivity or requiring approximation. This advance
opens up a wide range of real-world tasks and can
be combined with existing GP approximations in
a plug-and-play way. We demonstrate the efficacy
of the method on various synthetic and real-world
data sets.

1. Introduction
Gaussian processes (GPs, Rasmussen & Williams, 2006)
form an interpretable, modular, and tractable probabilistic
framework for modelling nonlinear functions. They are suc-
cessfully applied in a wide variety of single-output problems:
they can automatically discover structure in signals (Duve-
naud, 2014), achieve state-of-the-art performance in regres-
sion tasks (Bui et al., 2016), enable data-efficient models in
reinforcement learning (Deisenroth & Rasmussen, 2011),
and support many applications in probabilistic numerics
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(Hennig et al., 2015), such as in optimisation (Brochu et al.,
2010) and quadrature (Minka, 2000).

Multi-output Gaussian processes (MOGPs) leverage the
flexibility and interpretability of GPs while capturing struc-
ture across outputs. One of the first applications of GPs
with multiple outputs was in geostatistics (Matheron, 1969).
Today, MOGPs models can be found in various areas, in-
cluding geostatistics (Wackernagel, 2003), factor analysis
(Teh & Seeger, 2005; Yu et al., 2009), dependent or multi-
task learning (Boyle & Frean, 2005; Bonilla et al., 2007;
2008; Osborne et al., 2008), latent force models (Álvarez
et al., 2009; Álvarez & Lawrence, 2009; Álvarez et al.,
2010; Álvarez & Lawrence, 2011), state space modelling
(Särkkä et al., 2013), regression networks (Wilson et al.,
2012; Nguyen & Bonilla, 2014; Dezfouli et al., 2017), and
mixture models (Ulrich et al., 2015; Bruinsma, 2016; Parra
& Tobar, 2017; Requeima et al., 2019).

A key practical problem with existing MOGPs is their com-
putational complexity. For n input points, each having p
outputs, inference and learning in general MOGPs take
O(n3p3) time and O(n2p2) memory, although these may
be alleviated by a wide range of approximations (Candela
& Rasmussen, 2005; Titsias, 2009; Lázaro-Gredilla et al.,
2010; Hensman et al., 2013; Wilson & Nickisch, 2015; Bui
et al., 2017; Cheng & Boots, 2017; Hensman et al., 2018).
To mitigate these unfavourable scalings, a particular class
of MOGPs, which we call the Instantaneous Linear Mixing
Model (ILMM, Sec. 2.1), assumes that the data live around
anm-dimensional linear subspace, wherem < p. This class
exploits the low-rank structure of its covariance to reduce the
complexity of inference and learning to roughly O(n3m3)
time and O(n2m2) memory. Although m is typically much
smaller than p, the runtime complexity is again cubic in
m. Consequently, the ILMM is prohibitively expensive in
applications where moderate m is required. Consider, for
example, hourly real-time electricity prices at 2313 different
locations across 15 U.S. states and the Canadian province of
Manitoba during the year 2019 (MISO, 2019). Forecasting
electricity prices is crucial in the planning of energy trans-
mission, which happens 24 hours in advance. The ILMM is
particularly well suited to this task: the prices derive from
optimal power flow, which tends to exhibit low-rank struc-
ture. However, it still takes roughly m = 40 to explain 95%
of the variance of this data. For n = 1 k time points, this
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requires the inversion of a 40 k × 40 k matrix. Even worse,
to explain 99% of the variance, it requires the inversion of a
120 k × 120 k matrix, clearly far beyond what is feasible.

In this paper, we develop a new perspective on MOGPs
in the Instantaneous Linear Mixing Model class through
the use of a sufficient statistic of the data. We use this
sufficient statistic to identify a class of MOGPs, which we
call the Orthogonal Instantaneous Linear Mixing Model
(OILMM, Sec. 3), in which inference and learning take
O(n3m+nmp+m2p) time andO(n2m+np+mp) mem-
ory, without sacrificing significant expressivity nor requiring
any approximations. The dominant (first) terms in these ex-
pressions are linear in m, rather than cubic. It is this feature
that allows the OILMM to scale to large m. The linear
scaling is achieved by breaking down the high-dimensional
multi-output problem into independent single-output prob-
lems, whilst retaining exact inference. Consequently, the
proposed methodology is interpretable—e.g., it can be seen
as a natural generalisation of probabilistic principal com-
ponent analysis (PPCA, Tipping & Bishop, 1999)—simple
to implement, and trivially compatible with single-output
scaling techniques in a plug-and-play way. For example, it
can be combined with the variational inducing point approx-
imation by (Titsias, 2009) or with state-space approximation
methods (Sec. 3.9); these approximations reduce the time
complexity of the dominant term to linear in both the num-
ber of data points n and m. We demonstrate the efficacy of
the OILMM in experiments on various synthetic and real-
world data sets. Simple algorithms to perform inference and
learning in the OILMM are presented in App. A.

2. Multi-Output Gaussian Process Models
For tasks with p outputs, multi-output Gaussian processes
induce a prior distribution over vector-valued functions
f : T → Rp by requiring that any finite collection of func-
tion values fp1

(t1), . . . , fpn
(tn) with (pi)

n
i=1 ⊆ {1, . . . , p}

are multivariate Gaussian distributed. We consider the in-
put space time, where T = R, but the analysis trivially
applies to more general feature spaces, e.g. T = Rd. A
MOGP f ∼ GP(m,K) is described by a vector-valued
mean function m(t) = E[f(t)] and a matrix-valued covari-
ance function K(t, t′) = E[f(t)fT(t′)]−E[f(t)]E[fT(t′)].
For n observations y(t1), . . . , y(tn) ∈ Rp, inference and
learning take O(n3p3) time and O(n2p2) memory.

2.1. The Instantaneous Linear Mixing Model

A simple, but general class of MOGPs decomposes
a signal f(t) comprising p outputs into a fixed basis
h1, . . . , hm ∈ Rp with coefficients x1(t), . . . , xm(t) ∈ R:

f(t) = h1x1(t) + . . .+ hmxm(t) = Hx(t)

where hi is the ith column of H . The coefficients x1(t), . . . ,

xm(t) are time varying and modelled independently with
unit-variance Gaussian processes. The noisy signal y(t)
is then generated by adding N (0,Σ)-distributed noise to
f(t). Intuitively, this means that the p-dimensional data
live in a “pancake” (Roweis & Ghahramani, 1999; MacKay,
2002) around the m-dimensional column space of H , where
typically m� p.

Mod. 1 (Instantaneous Linear Mixing Model). Let K be an
m×m diagonal multi-output kernel with K(t, t) = Im, H
a p×m matrix, and Σ a p× p observation noise covariance.
Then the ILMM is given by the following generative model:

x ∼ GP(0,K(t, t′)), (latent processes)
f(t) |H,x(t) = Hx(t), (mixing mechanism)

y | f ∼ GP(f(t), δ[t− t′]Σ). (noise model)

We call x the latent processes and H the mixing matrix or
basis. Throughout the paper, we assume that H has linearly
independent columns. If we marginalise out f and x, we find
that y ∼ GP(0, HK(t, t′)HT + δ[t− t′]Σ), which reveals
that the ILMM exhibits low-rank covariance structure. It
also shows that the ILMM is a time-varying generalisation
of factor analysis (FA): choosing K(t, t′)=δ[t−t′]Im and
Σ diagonal recovers FA exactly.

The ILMM is definitely not novel; the specific formulation
in Mod. 1 is for convenience of the exposition in this paper.
In particular, the ILMM is very similar to the Linear Model
of Coregionalisation (LMC) (Goovaerts, 1997). In the LMC,
every latent process has multiple independent copies and the
observation noise Σ is typically diagonal. More generally,
the ILMM is a special case of the more general formulation
with mixing mechanism f(t) =

∫
H̃(t, τ)x(τ) dτ where

H̃ : T × T → Rp×m is a matrix-valued time-varying filter.
In particular, it is the case H̃(t, τ) = δ(t − τ)H; here the
mixing is instantaneous and time-invariant. Many other
MOGPs in the machine learning and geostatistics literature
can be seen as specialisations of this more general formu-
lation by imposing structure on H̃ and K. An organisation
of the literature from this point of view, which we call the
Mixing Model Hierarchy (MMH), is presented in App. B.

2.2. Inference and Learning in the ILMM

The complexities of inference and learning in MOGPs can
often be alleviated by exploiting structure in the kernel. This
is the case for the ILMM, which we have seen exhibits low-
rank covariance structure. In this section, we develop a new
perspective on the ILMM by showing that the covariance
structure can be exploited by devising a low-dimensional
“summary” or “projection” of the p-dimensional observa-
tions. This reduces the complexities from O(n3p3) time
and O(n2p2) memory to O(n3m3 +nmp+m2p) time and
O(n2m2 + np + mp) memory, where O(nmp + m2p) is
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the cost of projecting the data and computing the projec-
tion, and O(np + mp) is the cost of storing the data and
projection.

The low-dimensional projection of the observations y will
be given by a sufficient statistic for the model, which is
therefore “without loss of information” and can be used
to accelerate inference. Concretely, the projection of y is
given by the maximum likelihood estimate (MLE) of x
under the likelihood p(y |x) of the ILMM. As Prop. 2 in
App. D shows, this MLE is given by Ty where T is the
m × p matrix (HTΣ−1H)−1HTΣ−1; Ty is an unbiased
estimator of x. Because Ty is an MLE for x, it is a func-
tion of a sufficient statistic for x, if one exists. Prop. 3 in
App. E shows that Ty is actually minimally sufficient it-
self. For any prior p(x) over x, sufficiency of Ty gives that
p(x | y) = p(x |Ty); that is, conditioning on y is equivalent
to conditioning on Ty, where Ty can be interpreted as a
“summary” or “projection” of y. This idea is formalised in
the following proposition, which is proven in App. F:

Prop. 1. Let p(x) be a model for x : T → Rm, not neces-
sarily Gaussian,H a p×mmatrix, and Σ a p×p observation
noise covariance. Then consider the following generative
model:

x ∼ p(x), (latent processes)
f(t) |H,x(t) = Hx(t), (mixing mechanism)

y | f ∼ GP(f(t), δ[t− t′]Σ). (noise model)

Consider a p × n matrix Y of observations of y. Then
p(f |Y ) = p(f |TY ), where the distribution of the pro-
jected observed signal Ty is

Ty |x ∼ GP(x(t), δ[t−t′]ΣT ) with ΣT = (HTΣ−1H)−1.

Moreover, the probability of the data Y is given by

p(Y )=

[
n∏

i=1

N (yi | 0,Σ)

N (Tyi | 0,ΣT )

]∫
p(x)

n∏
i=1

N (Tyi |xi,ΣT ) dx

where the ith observation yi is the ith column of Y .

Crucially, Y are p-dimensional observations, TY are m-
dimensional summaries, and typically m� p, so condition-
ing on TY is often much cheaper; note that computing TY
takesO(nmp) time andO(mp) memory. In particular, if we
apply Prop. 1 to the ILMM by letting x ∼ GP(0,K(t, t′)),
we immediately get the claimed reduction in complexi-
ties: whereas conditioning on Y takes O(n3p3) time and
O(n2p2) memory, we may equivalently condition on TY ,
which takes O(n3m3) time and O(n2m2) memory instead.
This important observation is depicted in Fig. 1a.

The case of Prop. 1 where x is Gaussian can be found as
Results 1 and 2 by Higdon et al. (2008), and was also used by
the authors to accelerate inference. Although the reduction

in computational complexities allows Higdon et al. to scale
to significantly larger data, they are still limited by the cubic
dependency on m.

If the observations can be naturally represented as multi-
index arrays in Rp1×···×pq , a natural choice is to correspond-
ingly decompose H = H1 ⊗ · · · ⊗ Hq where ⊗ is the
Kronecker product. In this parametrisation, the projection
and projected noise also become the Kronecker products:
T = T1 ⊗ · · · ⊗ Tq and ΣT = ΣT1

⊗ · · · ⊗ ΣTq
. See

App. H. The model by Zhe et al. (2019) can be seen as an
ILMM of this form with K(t, t′) = k(t, t′)Im where k is a
scalar-valued kernel and Σ = σ2Ip.

In Prop. 1, we call ΣT = TΣT T = (HTΣ−1H)−1 the pro-
jected observation noise. The projected noise ΣT is impor-
tant, because it couples the latent processes upon observing
data. In particular, if the latent processes are independent
under the prior and ΣT is diagonal, then the latent processes
remain independent when data is observed. This observa-
tion forms the basis of the computational gains achieved by
the Orthogonal Instantaneous Linear Mixing Model.

2.3. Interpretation of the Likelihood

Prop. 1 shows that the log-probability of the data Y is
equal to the log-probability of the projected data TY plus,
for every observation yi, a correction term of the form
logN (yi | 0,Σ)/N (Tyi | 0,ΣT ). Prop. 4 in App. G shows
that this correction term can be written as

− 1
2 (p−m) log 2π − 1

2 log |Σ|/|ΣT |
noise “lost by projection”

− 1
2‖yi −HTyi‖2Σ,
data “lost by projection”

where ‖ • ‖Σ = ‖Σ− 1
2 • ‖. When the likelihood is optimised

with respect to H , the correction terms will prevent the
projection T from discarding a component of the data Y and
the noise Σ that is “too large”. For example, for the ILMM,
if these correction terms were ignored, then after optimising
we would find that TY = 0 and ΣT = 0, because the
density of a zero-mean Gaussian is highest at the origin,
and becomes higher as the variance becomes smaller; it is
exactly TY = 0 and ΣT = 0 that the two penalties prevent
from happening.

3. The Orthogonal Instantaneous Linear
Mixing Model

Inspired by Prop. 1, we will now identify a subclass of the
ILMM for which, in practice, inference and learning scale
linearly in the number of latent processes m rather than
cubically. As we will see, this happens when the projected
observation noise is diagonal, which is the case for the
Orthogonal Instantaneous Linear Mixing Model (OILMM):
the subclass of ILMMs where the basis H is orthogonal. In
particular, H = US

1
2 where U is a matrix with orthonormal



Scalable Exact Inference in Multi-Output Gaussian Processes

Y

TY

p(f |Y )

p(x |TY )

pr
oj

ec
tio

n

O
(n

m
p
)

inference

O(n3p3)

inference

O(n3m3)

re
co

ns
tr

uc
tio

n

O
(n

m
p
)

(a) Conditioning on Y in the ILMM
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(c) Difference between the ILMM and OILMM

Figure 1. (a–b) Commutative diagrams depicting that conditioning on Y in the ILMM and OILMM is equivalent to conditioning
respectively on TY and independently every xi on (TY )i:, but yield different computational complexities. The reconstruction costs
assume computation of the marginals. (c) Illustration of the difference between the ILMM and OILMM. The trajectory of a particle
(dashed line) in two dimensions is modelled by the ILMM (blue) and OILMM (orange). The noise-free position f(t) is modelled as a
linear combination of basis vectors h1 and h2 with coefficients x1(t) and x2(t) (two independent GPs). In the OILMM, the basis vectors
h1 and h2 are constrained to be orthogonal; in the ILMM, h1 and h2 are unconstrained.

columns and S > 0 a diagonal. We define this model as
follows:

Mod. 2 (Orthogonal Instantaneous Linear Mixing Model).
The OILMM is an ILMM (Mod. 1) where the basis H is
a p × m matrix of the form H = US

1
2 with U a matrix

with orthonormal columns and S > 0 diagonal, and Σ =
σ2Ip +HDHT a p× p matrix with D ≥ 0 diagonal.

The difference between the ILMM and the OILMM is illus-
trated in Fig. 1c. In the OILMM, we require that m ≤ p,
since the number of p-dimensional vectors that can be mutu-
ally orthogonal is at most p. Also, D in Σ can be interpreted
as heterogeneous noise deriving from the latent processes.
Moreover, although H and Σ do not depend on time, our
analysis and results trivially carry over to the case where Ht

and Σt do vary with time. Finally, for the OILMM, Prop. 8
in App. L shows that T = S−

1
2UT and ΣT = σ2S−1 +D.

Whereas the ILMM is a time-varying generalisation of FA,
the OILMM can be seen as a time-varying generalisation of
probabilistic principal component analysis (PPCA, Tipping
& Bishop, 1999): D = 0 andK(t, t′) = δ[t−t′]Im recovers
the orthogonal solution of PPCA exactly; recall that PPCA
admits infinitely many solutions, with only one correspond-
ing to orthogonal axes, whereas the modelling assumptions
of the OILMM recover this solution automatically. See
Fig. 2 for a visualisation of the relationship between FA,
PPCA, the ILMM, and the OILMM. The OILMM is also re-
lated to Gaussian Process Factor Analysis (GPFA, Yu et al.,
2009), with the crucial difference being that in GPFA orthog-
onalisation of the columns ofH is done as a post-processing
step, whereas in the OILMM orthogonality of the columns
of H is built into the model. In this respect, the OILMM is
more similar to the model by Higdon et al. (2008), who also
consider a MOGP with an orthogonal basis built in.
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OILMM

orthogonality constraint

tim
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Figure 2. Relationship between factor analysis (FA), probabilistic
principal component analysis (PPCA, Tipping & Bishop, 1999),
the ILMM (Mod. 1), and the OILMM (Mod. 2)

3.1. Generality of the OILMM

A central theme of the experiments will be to assess how
restrictive the orthogonality assumption is for the OILMM.
In this section, we theoretically investigate this question
from various perspectives. In the separable case, where
K(t, t′) = k(t, t′)Im for a scalar-valued kernel k, for every
ILMM with homogeneous observation noise (Σ = σ2Ip),
there exists an OILMM with D = 0 that is equal in distribu-
tion to y. To see this, note

y(ILMM) ∼ GP(0, k(t, t′)HHT + σ2δ[t− t′]Ip),

y(OILMM) ∼ GP(0, k(t, t′)USUT + σ2δ[t− t′]Ip).

Hence, letting USUT be the eigendecomposition of HHT

gives an OILMM equal in distribution to y. In the non-
separable case, where diagonal elements of K are linearly
independent, in general only the distribution of y(t) at ev-
ery t can be recovered by an OILMM, but the correlation
between y(t) and y(t′) for t′ 6= t may be different. In
terms of the joint distribution over x and y, which is impor-
tant for interpretability of the latent processes, Prop. 7 in
App. K shows that the Kullback–Leibler (KL) divergence
between two ILMMs with bases H and Ĥ is proportional
to ‖H − Ĥ‖2F , hence symmetric, where ‖ • ‖F denotes the
Frobenius norm. As a consequence (Prop. 7), the KL be-
tween an ILMM with basis H and the OILMM closest in
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KL is upper bounded by ‖Im − V ‖2F where V are the right
singular vectors of H . This makes sense: V = Im implies
that H is of the form US

1
2 with U a matrix with orthonor-

mal columns and S > 0 diagonal. It also shows that an
ILMM is close to an OILMM if V is close to Im in the
sense of the Frobenius norm.

3.2. Choice of Basis

The basis H is a parameter of the model that can be
learned through gradient-based optimisation of the likeli-
hood. Parametrising the orthogonal part U of the basis H
takes O(m2p) time and O(mp) memory (see App. C). This
complexity is quadratic in m, rather than linear. However,
the cost of parametrising U is typically far from dominant,
which means that this cost is typically negligible. See App. I
for a more detailed discussion.

Observing that E[f(t)fT(t)] = HHT, a sensible initial-
isation of the basis H is (a truncation of) Û Ŝ

1
2 where

Σ̂ = Û ŜÛT is the eigendecomposition of an estimate Σ̂
of the spatial covariance. In the case that there is a kernel
over the outputs, e.g. in separable spatio-temporal GP mod-
els, H can be set to (a truncation of) US

1
2 where USUT is

an eigendecomposition of the kernel matrix over the outputs.
The hyperparameters of the kernel over the outputs can then
be learned with gradient-based optimisation by differentiat-
ing through the eigendecomposition. See Sec. 3.9.

3.3. Diagonal Projected Noise

As alluded to in Sec. 2.1, under the OILMM, the projected
noise ΣT from Prop. 1 is diagonal: ΣT = σ2S−1 + D;
Prop. 6 in the App. J characterises exactly when this is the
case. This property is crucial, because, as we explain in the
next paragraph, it allows the model to break down the high-
dimensional multi-output problem into independent single-
output problems, which brings significant computational
advantages.

3.4. Inference

Since the projected noise is diagonal, the latent processes
remain independent when data is observed. We may hence
treat the latent processes independently, conditioning the
ith latent process xi on (TY )i: = Y TUi:/

√
Sii under

noise (ΣT )ii = σ2/Sii + Dii, which means that the high-
dimensional prediction problem breaks down into indepen-
dent single-output problems. Therefore, inference takes
O(n3m + nmp) time and O(n2m + np) memory (see
App. C), which are linear in m. This decoupled inference
procedure is depicted in Fig. 1b and outlined in more detail
in Apps. A.2 and A.3. Note that the decoupled problems
can be treated in parallel to achieve sublinear wall time, and
that in the separable case further speedups are possible.

3.5. Learning

For computing the marginal likelihood, the OILMM also
offers computational benefits. Prop. 9 in App. M shows that
log p(Y ) from Prop. 3 simplifies to:

log p(Y )

=−n
2

log |S|−n(p−m)

2
log 2πσ2− 1

2σ2
‖(Ip−UUT)Y ‖F

+
∑m

i=1 logN ((TY )i: | 0,Ki + (σ2/Sii +Dii)In)

where ‖ • ‖F denotes the Frobenius norm andKi is the n×n
kernel matrix for the ith latent process xi. We conclude that
learning also takes O(n3m + nmp) time and O(n2m +
np) memory (see App. C), again linear in the number of
latent processes. Computation of the marginal likelihood is
outlined in more detail in App. A.4.

3.6. Interpretability

Besides computational benefits, the fact that the OILMM
breaks down into independent problems for the latent pro-
cesses also promotes interpretability.1 Namely, the inde-
pendent problems can be separately inspected to interpret,
diagnose, and improve the model. This is much easier than
directly working with predictions for the data, which are
high dimensional and often strongly correlated between
outputs. For example, the OILMM allows a simple and
interpretable decomposition of the mean squared error:

‖y −Hx‖2

MSE

= ‖PH⊥y‖2

data not
captured by basis

+

m∑
i=1

Sii ((Ty)i − xi)2,

MSE of
ith latent process

where PH⊥ is the orthogonal projection onto the orthogonal
complement of col(H). See Prop. 10 in App. N for a proof.

3.7. Scaling

For both learning and inference, the problem decouples
into m independent single-output problems. Therefore, to
scale to a large number of data points n, off-the-shelf single-
output GP scaling techniques can be trivially applied to
these independent problems. For example, if the variational
inducing point method by Titsias (2009) is used with r � n
inducing points, then inference and learning are further
reduced to O(nmr2) time and O(nmr) memory, ignoring
the cost of the projection (see App. C). Most importantly,
if k(t, t′) is Markovian (e.g. of the Matérn class), then one
can leverage state-space methods to efficiently solve the m
independent problems exactly (Hartikainen & Särkkä, 2010;
Särkkä & Solin, 2019). This brings down the scaling to
O(nmd3) time and O(nmd2) memory, where d is the state

1In the OILMM, the latent processes retain independence in the
posterior distribution, which is not generally true for the ILMM.
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dimension, typically d � m,n (see App. C). We further
discuss this approach in Sec. 3.9.

3.8. Missing Data

Missing data is troublesome for the OILMM, because it is
not possible to take away a subset of the rows of H and
retain orthogonality of the columns. In this section, we
develop an approximation for the OILMM to deal with
missing data in a simple and effective way. For a matrix or
vectorA, letAo andAm denote the rows ofA corresponding
to respectively observed and missing values. Also, for a
matrix A, let d[A] denote the diagonal matrix resulting from
setting the off-diagonal entries of A to zero. In the case of
missing data, Prop. 11 in App. O.1 shows that the projection
and projected noise are given by To = S−

1
2Uo
† and ΣTo =

σ2S−
1
2 (Uo

TUo)−1S−
1
2 + D. Observe that ΣTo is dense,

because, unlike U , the columns of Uo are not orthogonal.
However, they may be approximately orthogonal, which
motivates the approximation ΣTo ≈ d[ΣTo ]. Prop. 12 in
App. O.1 shows that this approximation will be accurate if
missing observations cannot decrease the norm of a vector
in col(H) too much:

εrel =
‖ΣTo − d[ΣTo ]‖op

‖d[ΣTo ]‖op
/ max

y∈col(H):‖y‖=1
‖ym‖2

where ‖ • ‖op denotes the operator norm and / denotes in-
equality up to a proportionality constant. For example, if the
ith column of H is a unit vector, say ek, then the bound does
not guarantee anything. Indeed, if the kth output is missing,
then potentially all information about the ith latent process
is lost. On the other hand, if, for example, ‖U‖2∞ / 1/p,
then Corollary 1 in App. O.1 shows that εrel / s/p if s
outputs are missing, which means that the approximation
will be accurate if s � p. With this approximation, two
things change in the log-likelihood (Rem. 1 in App. O.1):
for every time point with missing data (i) UUT becomes
UoU

†
o and (ii) an extra term − 1

2 log |UT
o Uo| appears.

It is also easy to use variational inference to handle missing
data (App. O.2) and to support heterogeneous observation
noise (App. P), but we leave experimental tests of these
approaches to future work.

3.9. Application to Separable Spatio–Temporal GPs

Separable spatio–temporal GPs, which are of the form
f ∼ GP(0, kt(t, t

′)kr(r, r′)), form a vector-valued process
f(t) = (f(t, ri))

p
r=1 ∼ GP(0, kt(t, t

′)Kr) when observed
at a fixed number of locations in space, where Kr is the
p × p matrix with (Kr)ij = kr(ri, rj). Letting USUT be
the eigendecomposition of Kr, f(t) is an OILMM with
H = US

1
2 and K(t, t′) = kt(t, t

′)Ip. Note that m = p, so
the projection takes O(np2) time (see App. C).
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Figure 3. Runtime (left) and memory usage (right) of the ILMM
and OILMM for computing the evidence of n = 1500 observations
for p = 200 outputs.

Combining the OILMM framework with efficient state-
space scaling techniques (Hartikainen & Särkkä, 2010;
Särkkä & Solin, 2019; Solin et al., 2018; Nickisch et al.,
2018), which are either exact or arbitrarily good approxi-
mations, the complexities are reduced to O(np2 + p3) time
and O(np+ p2) memory for the entire problem, which are
linear in n (see App. C). This compares favourably with the
filtering techniques of Särkkä et al. (2013) and Hartikainen
et al. (2011), both of which have O(np3) time and O(np2)
memory, and the Kronecker product decomposition (Saatçi,
2012, Ch. 5) approach, which requires O(p3 +n3) time and
O(p2 + n2) memory complexity.

By relaxing K to be a general diagonal multi-output kernel
with K(t, t) = Ip, we obtain a new class of models which
are nonseparable relaxations of the above in which exact
inference remains efficient. The orthogonal basis for this
OILMM is, as before, the eigenvectors of a kernel matrix
whose hyperparameters can be optimised.

4. Experiments
We test the OILMM in experiments on synthetic and real-
world data sets. A Python implementation and code to re-
produce the experiments is available at https://github.
com/wesselb/oilmm. A Julia implementation is available
at https://github.com/willtebbutt/OILMMs.jl.

4.1. Computational Scaling

We demonstrate that exact inference scales favourably in
m for the OILMM, whereas the ILMM quickly becomes
computationally infeasible as m increases. We use a highly
optimised implementation of exact inference for the ILMM,
kindly made available by Invenia Labs 2. Fig. 3 shows the
runtime and the memory usage of the ILMM and OILMM.
Observe that the ILMM scales O(m3) in time and O(m2)
in memory, whereas the OILMM scales O(m) in both time
and memory. For m = 25, the ILMM takes nearly 10
minutes to compute the evidence, whereas the OILMM only
requires a couple seconds. See App. Q for more details.

2https://invenialabs.co.uk

https://github.com/wesselb/oilmm
https://github.com/wesselb/oilmm
https://github.com/willtebbutt/OILMMs.jl
https://invenialabs.co.uk
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Figure 4. Ratio of timings of the Kronecker approach (Saatçi, 2012,
Ch. 5) and the OILMM to compute the marginal likelihood of the
latent function (LML) and to generate a single prior sample (RNG).
See Tab. 5 in App. R for full results.

4.2. Rainforest Tree Point Process Modelling

We consider a subset of the extensive rain forest data set
credited to Hubbell et al. (2005); Condit (1998); Hubbell
et al. (1999) in which the locations of 12929 trichilia tu-
berculata have been recorded. This data is modelled via
an inhomogeneous Poisson process, whose log-intensity is
given a GP prior. Inference is framed in terms of a latent GP
with a Poisson likelihood over a discrete collection of bins.
The methodology of Solin et al. (2018) is adapted to accel-
erate inference of the latent processes, which demonstrates
the ability of the OILMM to be combined with existing
scaling techniques in a plug-and-play fashion. Inference
in the kernel parameters and log-intensity process utilise a
simple blocked Gibbs sampler.

It takes roughly three hours3 to perform 105 iterations of
MCMC (circa 105 marginal likelihood evaluations and 106

prior samples) with 20000 bins, demonstrating the feasibil-
ity of a computationally demanding choice of approximate
inference procedure. The Kronecker product factorisation
technique (Saatçi, 2012, Ch. 5) is a competitive method in
this setting, as it can also efficiently and exactly compute log
marginal likelihoods and generate prior samples efficiently.
Fig. 4 shows the trade off between the two approaches to
inference. In this experiment we define p = n/2, meaning
that the approach described in Sec. 3.9 scales cubically in
n. Despite their quite different implementation details, they
do obtain similar performance, with the OILMM perform-
ing relatively better as n increases. See App. R for further
experimental details and analysis.

4.3. Temperature Extrapolation

Having demonstrated that the OILMM offers computational
benefits, we now show that the method can scale to large
numbers of latent processes (m = p = 247) to capture
meaningful dependencies between outputs. We consider
a simple spatio–temporal temperature prediction problem
over Europe. Approximately 30 years worth of the ERA-

33.6 GHz Intel Core i7 processor and 48 GB RAM

Table 1. Root-mean-square error (RMSE) and normalised poste-
rior predictive log-probability (PPLP) of held-out test data for the
OILMM with varying m and independent GPs (IGP) in the tem-
perature extrapolation experiment. The OILMM achieves parity in
RMSE with IGP at m = 200 and surpasses it in PPLP at m = 5.

m 1 5 50 100 200 247

R
M

SE OILMM 2.151 2.072 2.030 2.002 1.992 1.991
IGP 1.993 1.993 1.993 1.993 1.993 1.993

PP
L

P OILMM −1.976 −1.457 −0.905 −0.774 −0.600 −0.525
IGP −1.923 −1.923 −1.923 −1.923 −1.923 −1.923

Interim reanalysis temperature data4 (Dee et al., 2011) is
smoothed in time with a Hamming window of width 31
and sub-sampled once every 31 days to produce a data set
comprising 13× 19 = 247 outputs and approximately 350
months worth of data. We train the OILMM and IGPs (both
models use Matérn–5/2 kernels with a periodic component)
on the first 250 months of the data and test on the next 100
months. For the OILMM, we use a range of numbers of
latent processes, up to m = p = 247, and let the basis H
be given by the eigenvectors of the kernel matrix over the
points in space (Matérn–5/2 with a different length scale
for latitude and longitude).

Tab. 1 summarises the performance of the models; more de-
tailed graphs can be found in App. S. The OILMM achieves
parity in RMSE with IGP at m = 200 latent processes—the
data is highly periodic and the predictions are accurate for
both models. Moreover, the OILMM requires only m = 5
latent processes to achieve a better PPLP than IGP and
continues to improve with increasing m, demonstrating the
need for a large number of latent processes.

4.4. Exchange Rates Prediction

In this experiment and the next, we test the orthogonality
assumption and missing data approximation of the OILMM
by comparing its performance to an equivalent ILMM with
no restrictions on H and which deals exactly with missing
data. We consider daily exchange rates with respect to USD
of the top ten international currencies and three precious
materials in the year 2007. The task is to predict CAD, JPY,
and AUD on particular days given that all other currencies
are observed throughout the whole year; we exactly follow
Requeima et al. (2019) in the data and setup of the exper-
iment. For the (O)ILMM, we use m = 3 latent processes
with Matérn–1/2 kernels and randomly initialise and learn
the basis H .

4All output from CMIP5 and ERA-Interim models was regrid-
ded onto the latitude–longitude grid used for the IPSL-CM5A-LR
model.
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Figure 5. Predictions of the OILMM for the exchange rates experiment (top) and for one of the seven electrodes (F2) in the EEG
experiment (bottom). Predictions are shown in blue, denoting the mean and central 95% credible region. Training data are denoted as
black dots (•) and held-out test data as orange crosses (×).

Table 2. Standardised mean-squared error (SMSE) and normalised
posterior predictive log-probability (PPLP) of held-out test data for
various models in the exchange rates (ER) and EEG experiment.
IGP stands for independent GPs. The references in square brackets
are to models in Fig. 8 in App. B. GPAR (right column) is not
a linear MOGP, and thus not comparable to the other methods.
However, it is state-of-the-art on both tasks and hence provided
as reference. The ILMM and OILMM achieve results equal up to
two decimal places. ∗Numbers are taken from Nguyen & Bonilla
(2014). †Numbers are taken from Requeima et al. (2019).

IGP CMOGP[11] CGP[14] ILMM OILMM GPAR[18]

SM
SE ER 0.60∗ 0.24∗ 0.21∗ 0.19 0.19 0.03†

EEG 1.75† 0.49 0.49 0.26†

PP
L

P ER 3.57 3.39 3.39
EEG −1.27 −2.11 −2.11

Tab. 2 shows that the ILMM and OILMM have identical
performance. This shows that the orthogonality assumption
and missing data approximation of the OILMM can work
well in practice.

4.5. Electroencephalogram Prediction

We consider 256 voltage measurements from 7 electrodes
placed on a subject’s scalp while the subject is shown a cer-
tain image; Zhang et al. (1995) describes the data collection
process in detail. The task is to predict the last 100 samples
for three electrodes given that the remainder of the data is
observed; we exactly follow Requeima et al. (2019) in the
data and setup of the experiment. For the (O)ILMM, we
use m = 3 latent processes with exponentiated quadratic
kernels and randomly initialise and learn H .

Tab. 2 shows that the ILMM and OILMM again have iden-
tical performance. This again shows that the orthogonality
assumption does not harm the model’s predictive power and
that the missing data approximation can work well.

4.6. Large-Scale Climate model Calibration

In this final experiment, we scale to large data in a climate
modelling task over Europe. We use the OILMM to find
relationships between 28 climate simulators4 (see Taylor
et al., 2012, for background) by letting H = Hs ⊗Hr (see
App. H), where Hs are the first ms = 5 eigenvectors of
a 28 × 28 covariance matrix Ks between the simulators,
and Hr are the first mr = 10 eigenvectors of the kernel
matrix over the points in space (Matérn–5/2 with a differ-
ent length scale for latitude and longitude). This means
that the mrms = 50 latent processes are indexed by two
indices is and ir, one corresponding to the eigenvector of
the simulator covariance and one to the eigenvector of the
spatial covariance. The kernels for the latent processes are
Matérn–5/2. We consider n = 10000 time points for all 28
simulators, each with 247 outputs, giving a total of roughly
70 million data points. For the independent problems, we
use the variational inducing point method by Titsias (2009).

Fig. 6a shows that, as opposed to the empirical correlations,
which ignore all temporal structure, the correlations learned
by the OILMM exhibit a rich structure. A clustering of these
correlations in Fig. 6b reveals that the identified structure
is meaningful, because structurally similar simulators are
grouped near each other. We conclude that the OILMM can
be used to analyse large data in a simple and straightforward
way, and is able to produce interpretable and meaningful
results. See App. T for further experimental details and
analysis of the results.

5. Discussion and Conclusion
We investigated the use of a sufficient statistic of the data
to accelerate inference in MOGPs with orthogonal bases.
In practice, the proposed methodology scales linearly with
the number of latent processes m, allowing to scale to large
m without sacrificing significant expressivity nor requiring
any approximations. This is achieved by breaking down
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Figure 6. Results of the large-scale climate simulator experiment, showing (a) the empirical correlations and learned correlations (Ks)
between the simulators, (b) a dendrogram deriving from hierarhically clustering the simulators based on the learned correlations where the
colours indicate discovered groups, and (c) predictions for the latent processes for the first two eigenvectors of the covariance matrix
between simulators is = 1, 2 and the first two eigenvectors of the spatial covariance ir = 1, 2, for the last 1000 days. Predictions are
shown in blue, denoting the mean and central 95% credible region.

the high-dimensional prediction problem into independent
single-output problems, whilst retaining exact inference.
As a consequence, the method is interpretable, extremely
simple to implement, and trivially compatible with off-the-
shelf single-output GP scaling techniques for handling large
numbers of observations. We tested the method in a vari-
ety of experiments, demonstrating that it offers significant
computational benefits without harming predictive perfor-
mance. Interesting future directions are the application to
non-Gaussian models for the latent processes (see Prop. 1)
and targeting sub-linear time complexity by parallelisation
(see, e.g., Särkkä & García-Fernández, 2019).
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Notation

〈 • , • 〉 Euclidean inner product
‖ • ‖ Euclidean norm
‖ • ‖op Operator norm
‖ • ‖∞ Supremum norm
‖ • ‖F Frobenius norm

S⊥ Orthogonal complement of S

In n× n identity matrix
A > 0 A is strictly-positive definite
|A| Determinant of A
A† Moore–Penrose pseudo-inverse of A
col(A) Column space of A
A⊗B Kronecker product of A and B

N (x |µ,Σ) Density of the multivariate normal distribution with mean µ and covariance Σ at x

Assumptions
Throughout the appendix, we assume that the columns of H are linearly independent and that Σ > 0. As a consequence,
HTΣ−1H > 0.



A. How to Implement the OILMM
A.1. Parameters

The parameters of the OILMM are as follows:

Symbol Type Description

U Truncated orthogonal p×m matrix Orthogonal part of the basis H = US
1
2

S Positive, diagonal m×m matrix Diagonal part of the basis H = US
1
2

σ2 Positive scalar Part of the observation noise
D Positive, diagonal m×m matrix Part of the observation noise deriving from the latent processes
(θi)

m
i=1 Hyperparameters Hyperparameters for the latent processes, e.g. kernel parameters

A.2. Inference

Inference in the OILMM proceeds in three steps. Let Y ∈ Rp×n be a matrix where the columns correspond to observations.

Projection step. In the projection step, we project the data to generate “observations for the latent processes”. We denote
these observations by Yproj ∈ Rm×n, where again the columns corresponds to observations. We also construct the “projected
noise”, which is the observation noise under which the latent processes perform their observations.

(1) Construct the projection:

T = S−
1
2UT ∈ Rm×p.

(2) Project the observations:
Yproj = TY ∈ Rm×n.

(3) Construct the projected noise:
ΣT = σ2S−1 +D ∈ Rm×m

diag .

This is a diagonal matrix.

The ith row of Yproj, which we denote by y(i)
proj ∈ Rn, corresponds to observations for latent process i.

Projection step (missing data). In the case of missing data, certain elements of Y are missing. Partition the columns (time
stamps) of Y into blocks Y (1) ∈ Rp×n1 , . . . , Y (k) ∈ Rp×nk where n1 + . . . + nk = n. These blocks should be chosen
such that, for every block Y (i), the observations for an output are either all missing or all available, i.e. every row of Y (i)

is either entirely missing or entirely available. Then consider the blocks Y (1) ∈ Rp×n1 , . . . , Y (k) ∈ Rp×nk separately by
repeatedly performing inference.

For every block—we henceforth suppress the dependence on the block index—denote by Yo ∈ Rp×n be the rows of the data
matrix corresponding to observed outputs. Similarly, let Uo ∈ Rp×m be the rows of U corresponding to observed outputs.

(1) Construct the projection:

T = S−
1
2 (UT

o Uo)−1UT
o ∈ Rm×p.

(2) Project the observations:
Yproj = TYo ∈ Rm×n.

(3) Construct the projected noise:

ΣT = σ2S−
1
2 d[(Uo

TUo)−1]S−
1
2 +D ∈ Rm×m

diag

where d[A] sets the off-diagonal elements of A to zero. This is a diagonal matrix.

Latent process inference step. In this step, we perform inference on the latent processes.

(1) For i = 1, . . . ,m, do the following:



Conditioning: Condition latent process i on data y(i)
proj ∈ Rn where the observation noise is (ΣT )ii. The latent process

is just an independent GP, and any GP package can be used to do this step. Moreover, any single-output
scaling technique can be used here, such as the variational inducing point approximation by Titsias
(2009).

Prediction: Make predictions with the posterior of latent process i. Again, any GP package can be used to do this
step. Denote the predictive means by µ(i) ∈ Rn and the predictive marginal variances by ν(i) ∈ Rn.

(2) Collect the predictive means and marginal variances of the latent processes into matrices µ and ν:

µ =

 (µ(1))T

...
(µ(m))T

 ∈ Rm×n, ν =

 (ν(1))T

...
(ν(m))T

 ∈ Rm×n.

Reconstruction step. In the reconstruction step, we construct the predictions of the OILMM from the predictions of the
latent processes.

(1) Construct the basis: H = US
1
2 ∈ Rp×m.

(2) Construct the predictive mean of the OILMM:

predictive mean = Hµ ∈ Rp×n.

(3) Construct the predictive marginal variances of the OILMM:

predictive marginal variances = (H ◦H)ν ∈ Rp×n

where ◦ denotes the Hadamard product.

A.3. Posterior Sampling

Instead of computing posterior means and marginal variances, you might want to generate posterior samples.

Projection step. See App. A.2.

Latent process sampling step.

(1) For i = 1, . . . ,m, do the following:

Conditioning: Condition latent process i on data y(i)
proj ∈ Rn where the observation noise is (ΣT )ii. The latent process

is just an independent GP, and any GP package can be used to do this step. Moreover, any single-output
scaling technique can be used here, such as the variational inducing point approximation by Titsias
(2009).

Sampling: Sample from the posterior of latent process i. Again, any GP package can be used to do this step.
Denote the sample by x̂(i) ∈ Rn.

(2) Collect the samples into a matrix:

X̂ =

 (x(1))T

...
(x(m))T

 ∈ Rm×n.

Reconstruction step.

(1) Construct the basis: H = US
1
2 ∈ Rp×m.

(2) Construct the posterior sample for the OILMM:

posterior sample = HX̂ ∈ Rp×n.



A.4. Computation of the Log-Marginal Likelihood

Projection step. See App. A.2.

Latent process marginal likelihood calculation.

(1) For i = 1, . . . ,m, do the following:

Marginal likelihood: Compute the log-probability of data y(i)
proj ∈ Rn under latent process i where the observation

noise is (ΣT )ii. Denote the resulting log-probability by LMLi. The latent process is just an
independent GP, and any GP package can be used to do this step. Moreover, any single-output
scaling technique can be used here, such as the variational inducing point approximation by
Titsias (2009).

Reconstruction step.

(1) Construct the “regularisation term”:

regulariser = −n
2

log |S| − n(p−m)

2
log 2πσ2 − 1

2σ2
(‖Y ‖2F − ‖UTY ‖2F )

where ‖ • ‖F denotes the Frobenius norm.

(2) Construct the log-probability of the data Y under the OILMM:

log p(Y ) = regulariser +

m∑
i=1

LMLi.

Reconstruction step (missing data). In the case of missing data, (1) is slightly different:

(1) Construct the “regularisation term”:

regulariser = −n
2

log |S| − n

2
log |UT

o Uo| −
n(p−m)

2
log 2πσ2 − 1

2σ2
(‖Yo‖2F − ‖chol(UT

o Uo)−1UT
o Yo‖2F )

where ‖ • ‖F denotes the Frobenius norm and chol( • ) the Cholesky decomposition. In this case, recall that n corresponds
to the number of time points in the current block and to p to the number of observed outputs in the current block.

B. Unifying Presentation of Multi-Output Gaussian Processes
Our attempt at a unifying presentation of MOGP models starts from setting up what we call the Mixing Model Hierarchy
(MMH). At the bottom of the Mixing Model Hierarchy stands the Instantaneous Linear Mixing Model (ILMM, Mod. 1 in
Sec. 2.1), which is a simple, but general class of MOGP models typically characterised by low-rank covariance structure.

The graphical model of the ILMM is illustrated in the top-left corner of Fig. 7, which highlights two restrictions of the
ILMM compared to a general MOGP: (i) the instantaneous spatial covariance of f , E[f(t)fT(t)] = HHT, does not vary
with time, because neither H nor K(t, t) = Im vary with time; and (ii) the noise-free observation f(t) is a function of x(t′)
for t′ = t only, meaning that, for example, f cannot be x with a delayed or a smoothed version of x. We hence call the
ILMM a time-invariant (due to (i)) and instantaneous (due to (ii)) MOGP.

The ILMM can be generalised in three ways. First, the mixing matrix H may vary with time. Then H ∈ Rp×m becomes a
matrix-valued function H : T → Rp×m, and the mixing mechanism becomes

f(t) |H,x = H(t)x(t).

We call such MOGP models time-varying (see Fig. 7, top right). Second, f(t) may depend on x(t′) for all t′ ∈ T . Then
the mixing matrix H ∈ Rp×m becomes a matrix-valued time-invariant filter H : T → Rp×m, and the mixing mechanism
becomes

f(t) |H,x =

∫
H(t− τ)x(τ) dτ.
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Figure 7. Graphical models illustrating the difference between time-invariant/time-varying and instantaneous/convolutional multi-output
GP models, for data sampled at real-valued times t1, t2, . . . (sampling period ∆t). Abbreviations used: xn = x(tn), fn = f(tn),
Hn = H(n∆t), and Hm

n = H(tm, tn). For simplicity, the dynamics of x are depicted as a Markov chain; since x is modelled with a GP,
xn actually depends on xn′ for all n′ ≤ n.
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[1–3, 5–7, 9,
13, 14, 19–21] [4, 8, 10, 11]

[12, 17]

[15][16, 18]

Form of H Form of K Mixing

[1, 5, 6, 16] H k(t, t′)I Instantaneous
[2]

[
H1 · · · Hq

]
diag(k1(t, t′)I, . . . , kq(t, t′)I) Instantaneous

[3, 7, 9, 13, 20, 21] H diag(k1(t, t′), . . . , kq(t, t′)) Instantaneous
[4, 10, 11, 15] H(t− t′) diag(δ(t− t′), . . . , δ(t− t′)) Convolutional
[8] Green’s function diag(k1(t, t′), . . . , kq(t, t′)) Convolutional
[12, 17] H(t) diag(k1(t, t′), . . . , kq(t, t′)) Instantaneous
[14]

[
H I

]
diag(k1(t, t′), . . . , kq+p(t, t′)) Instantaneous

[18] Lower triangular diag(k1(t, t′), . . . , kq(t, t′)) Instantaneous
[19] H1 ⊗ · · · ⊗Hq k(t, t′)I Instantaneous

[1] Intrinstic Coregionalisation Model (Goovaerts, 1997)
[2] Linear Model of Coregionalisation (Goovaerts, 1997)
[3] Semiparametric Latent Factor Model (Teh & Seeger, 2005)
[4] Dependent Gaussian Processes (Boyle & Frean, 2005)
[5] Multi-Task Gaussian Processes (Bonilla et al., 2008)
[6] Osborne et al. (2008)
[7] Higdon et al. (2008)
[8] Latent Force Models (Álvarez et al., 2009)
[9] Gaussian Process Factor Analysis (Yu et al., 2009)
[10] Multi-Output Gaussian Processes Through Variational Inducing Kernels (Álvarez et al., 2010)
[11] Convolved Multiple Output Gaussian Processes (Álvarez & Lawrence, 2011)
[12] Gaussian Process Regression Network (Wilson et al., 2012)
[13] Spatio–Temporal Bayesian Filtering and Smoothing (Särkkä et al., 2013)
[14] Collaborative Multi-Output Gaussian Processes (Nguyen & Bonilla, 2014)
[15] Generalised Gaussian Process Convolution Model (Bruinsma, 2016)
[16] Semi-Parametric Network Structure Discovery Models (Dezfouli et al., 2017)
[17] Grouped Gaussian Processes (Dahl & Bonilla, 2019)
[18] The Gaussian Process Autoregressive Regression Model (Requeima et al., 2019)
[19] High-Order Gaussian Process Regression (Zhe et al., 2019)
[20] Instantaneous Linear Mixing Model (Mod. 1)
[21] Orthogonal Instantaneous Linear Mixing Model (Mod. 2)

Figure 8. The Mixing Model Hierarchy, which organises MOGPs from the machine learning and geostatistics literature according to their
distinctive modelling assumptions



Table 3. Complexities of learning and inference in the ILMM and OILMM, ignoring the projection. In the table, n is the number of time
points; p is the number of outputs; m is the number of latent processes; r is the number of inducing points, typically r � n; and d is the
state dimensionality, typically d� n,m.

Model Runtime Memory

General MOGP O(n3p3) O(n2p2)
ILMM (Mod. 1) O(n3m3) O(n2m2)
OILMM (Mod. 2) O(n3m) O(n2m)
OILMM (Mod. 2) + Titsias (2009) O(nmr2) O(nmr)
OILMM (Mod. 2) + Hartikainen & Särkkä (2010) O(nmd3) O(nmd2)

APPLICATION TO SEPARABLE SPATIO–TEMPORAL GPS (SEC. 3.9)
OILMM (Mod. 2) O(n3p) O(n2p)
OILMM (Mod. 2) + Titsias (2009) O(npr2) O(npr)
OILMM (Mod. 2) + Hartikainen & Särkkä (2010) O(npd3) O(npd2)
Kronecker product factorisation (Saatçi, 2012, Ch. 5) O(n3 +p3) O(n2 +p2)

Table 4. Complexities of projecting the data and reconstructing the predictions in the ILMM and OILMM. In the table, n is the number of
time points; p is the number of outputs; and m is the number of latent processes.

Action Runtime Memory

Storing data − O(np)
Construction of projection T O(m2p) O(mp)
Projection O(nmp) O(np)
Construction of predictive marginal statistics O(nmp) O(np)

APPLICATION TO SEPARABLE SPATIO–TEMPORAL GPS (SEC. 3.9)
Construction of projection T O(p3) O(p2)
Projection O(np2) O(np)
Construction of predictive marginal statistics O(np2) O(np)

We call such MOGP models convolutional (see Fig. 7, bottom left). Finally, f(t) may depend on x(t′) for all t′ ∈ T and
this relationship may vary with time. Then the mixing matrix H ∈ Rp×m becomes a matrix-valued time-varying filter
H : T × T → Rp×m, and the mixing mechanism becomes

f(t) |H,x =

∫
H(t, τ)x(τ) dτ.

We call such MOGP models time-varying and convolutional (see Fig. 7, bottom right). The graphical models corresponding
to these generalisations of the ILMM are depicted in Fig. 7.

The ILMM can be extended in one other way, which is to include a prior distribution on H . This extension and the two
previously proposed generalisations together form the Mixing Model Hierarchy (MMH), which is depicted in Fig. 8. The
MMH organises multi-output Gaussian process models according to their distinctive modelling assumptions. Fig. 8 shows
how sixteen MOGP models from the machine learning and geostatistics literature can be recovered as special cases of the
various generalisations of the ILMM.

Not all multi-output Gaussian process models are covered by the MMH, however. For example, Deep GPs (Damianou,
2015) and variations thereon (Kaiser et al., 2018) are excluded because they transform the latent processes nonlinearly to
generate the observations.

C. Runtime and Memory Complexities
For the ILMM and OILMM, Tab. 3 gives an overview of the runtime and memory complexities associated to learning and
inference, and Tab. 4 gives an overview of the runtime and memory complexities associated to projecting the data and
reconstructing the predictions.



D. Maximum Likelihood Estimate
Prop. 2. Denote p(y |x) = N (y |Hx,Σ), and let T be the m× p matrix (HTΣ−1H)−1HTΣ−1. Then

Ty = arg max
x

p(y |x)

and Ty is an unbiased estimate of x: E[Ty |x] = x.

Proof. Note that
log p(y |x) ' − 1

2 (y −Hx)TΣ−1(y −Hx)

Using invertibility of HTΣ−1H , an elementary calculation then shows that the unique maximum with respect to x is given
by

x = (HTΣ−1H)−1HTΣ−1y = Ty.

To show that Ty is an unbiased estimate of x, we use that E[y |x] = Hx:

E[Ty |x] = THx = (HTΣ−1H)−1(HTΣ−1H)x = x.

E. Sufficient Statistic
To prove sufficiency of Ty , we need the property of T that it “preserves the signal-to-noise ratio”. This is characterised in
the following lemma.

Lem. 1.
N (y |Hx,Σ)

N (y | 0,Σ)
=
N (Ty |x, (HTΣ−1H)−1)

N (Ty | 0, (HTΣ−1H)−1)
.

Proof. It is simple to check the equality by direct verification. We show, however, how the equality may be derived. To
begin with, we have

(y −Hx)TΣ−1(y −Hx) = yTΣ−1y − 2xTHTΣ−1y + xTHTΣ−1Hx.

Here
HTΣ−1y = (HTΣ−1H)(HTΣ−1H)−1HTΣ−1y = (HTΣ−1H)Ty,

so
(y −Hx)TΣ−1(y −Hx) = yTΣ−1y − 2xT(HTΣ−1H)Ty + xT(HTΣ−1H)x.

Adding and subtracting yT T(HTΣ−1H)Ty, we find

(y −Hx)TΣ−1(y −Hx) = yTΣ−1y − yT T(HTΣ−1H)Ty + (x− Ty)T(HTΣ−1H)(x− Ty).

Hence, rearranging,

(y −Hx)TΣ−1(y −Hx)− yTΣ−1y = (x− Ty)T(HTΣ−1H)(x− Ty)− yT T(HTΣ−1H)Ty,

which yields the result.

Prop. 3. The MLE Ty of x is a minimal sufficient statistic for x.

Proof of Prop. 3. By a general characterisation of minimal sufficient statistics (see, e.g., Th. 6.2.13 in Casella & Berger,
2001), Ty is a minimal sufficient statistic for x if and only if it is true that p(y1 |x)/p(y2 |x) is constant as a function of x if
and only if Ty1 = Ty2. Indeed, by Lem. 1,

log
p(y1 |x)

p(y2 |x)
= (Ty1 − Ty2)T(HTΣ−1H)−1x+ const.

which, by invertibility of HTΣ−1H , does not depend on x if and only if Ty1 = Ty2.



F. Proof of Prop. 1
Proof of Prop. 1. By Prop. 3,

p(f |Y ) =

∫
p(f |x)p(x |Y ) dx =

∫
p(f |x)p(x |TY ) dx = p(f |TY )

where TY are observations for the process Ty. Since

y |x ∼ GP(Hx, δ[t− t′]Σ),

the process Ty has distribution
Ty |x ∼ GP(THx, δ[t− t′]TΣT T).

By explicit calculation, we find that
TH = (HTΣ−1H)−1HTΣ−1H = I

and
TΣT T = (HTΣ−1H)−1HTΣ−1ΣΣ−1H(HTΣ−1H)−1 = (HTΣ−1H)−1.

Thus
Ty |x ∼ GP(x, δ[t− t′]ΣT ) where ΣT = (HTΣ−1H)−1.

Moreover, using Lem. 1, the probability of the data Y is given by

p(Y ) =

∫ n∏
i=1

N (yi |Hx,Σ)p(x) dx =

[ N (yi | 0,Σ)

N (yi | 0,ΣT )

] ∫ n∏
i=1

N (Tyi |x,ΣT )p(x) dx.

G. Interpretation of the Likelihood
Prop. 4. The regularisation terms in like likelihood in Prop. 1 can be written as

log
N (y | 0,Σ)

N (Ty | 0,ΣT )
= −1

2
(p−m) log 2π −

noise “lost by projection”

1

2
log
|Σ|
|ΣT |

− 1

2
‖(Ip −HT )y‖2Σ,

data “lost by projection”

where ‖ • ‖Σ denotes the norm induced by the weighted inner product 〈 • , • 〉Σ = 〈Σ−1 • , • 〉.

Proof. The first two terms come directly from the multivariate Gaussian densities. We show how the third term may be
obtained. Rearrange

〈y, T TΣ−1
T Ty〉 = 〈Σ− 1

2 y, (Σ
1
2T TΣ−1

T TΣ
1
2 )Σ−

1
2 y〉 = 〈Σ− 1

2 y, PΣ−
1
2 y〉

where
P = Σ

1
2 (T TΣ−1

T T )Σ
1
2 = Σ−

1
2H(HTΣ−1H)−1HTΣ−

1
2 = Σ−

1
2HTΣ

1
2

which is the orthogonal projection onto col(Σ−
1
2H). Recall that an orthogonal projection P is defined by P 2 = P and

P T = P . Then

〈y,Σ−1y〉 − 〈y, T TΣ−1
T Ty〉 = 〈Σ− 1

2 y, (Ip − P )Σ−
1
2 y〉

= 〈Σ− 1
2 y, (Ip − P )2Σ−

1
2 y〉

= 〈(Ip − P )TΣ−
1
2 y, (Ip − P )Σ−

1
2 y〉

= ‖(Ip − P )Σ−
1
2 y‖2,

where we note that (Ip − P )2 = Ip − P and that Ip − P is symmetric. (In fact, P⊥ = Ip − P is the orthogonal projection
onto col(Σ−

1
2H)⊥.) To conclude, see that

‖(Ip − P )Σ−
1
2 y‖2 = ‖Σ− 1

2 (Ip − Σ
1
2PΣ−

1
2 )y‖2 = ‖(Ip −HT )y‖2Σ.

We note that HT is a projection, but not necessarily an orthogonal projection.
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Figure 9. Comparison of the time it takes to construct the basis H to the total time of a log-marginal likelihood computation for a range of
numbers of data points n and numbers of latent processes m. The data used is from the temperature extrapolation experiment (Sec. 4.3).

H. Tensor Product Basis
If the observations can be naturally represented as multi-index arrays in Rp1×···×pq , where the total number of outputs is
p =

∏q
i=1 pi, to obtain a reduction in parameters ofH , a natural choice is to correspondingly decomposeH = H1⊗· · ·⊗Hq

where ⊗ is the Kronecker product and Hi a pi ×mi matrix. The latent processes are then naturally seen as a Rm1×···×mq -
valued process, where their total number is m =

∏q
i=1mi. In this parametrisation of the ILMM, Prop. 5 shows that the

projection and projected noise also become the Kronecker products: T = T1 ⊗ · · · ⊗ Tq and ΣT = ΣT1
⊗ · · · ⊗ΣTq

. Using
the vectorisation trick, TY can be computed efficiently without the need to explicitly construct T .

Prop. 5. Let H be a basis that is a tensor product of other bases and let the observation noise Σ factorise similarly:

H = H1 ⊗ · · · ⊗Hq and Σ = Σ1 ⊗ · · · ⊗ Σq.

Then the projection is the tensor product of the projections and the projected noise is the tensor product of the projected
noises:

T = T1 ⊗ · · · ⊗ Tq and ΣT = ΣT1
⊗ · · · ⊗ ΣTq

where Ti = (HT
i Σ−1

i Hi)
−1HT

i Σ−1
i and Σi = (HT

i Σ−1
i Hi)

−1.

Proof. Follows directly from the compatibility of the Kronecker product with matrix multiplication, transposition, and
inversion.

I. Cost of Parametrising the Basis
For the OILMM, the only computation that does not scale linearly with the number of latent processes m is the parametrisa-
tion of the orthogonal part U of the basis H , which takes O(m2p) time. We argue that this cost is dominated by the cost
O(n3m+ nmp) of computing the log-marginal likelihood of the projected data:

(i) typically m ≤ n, p;

(ii) the cost of computing the log-marginal likelihood of the projected data scales with n, and often n� m, p; and

(iii) assuming that p is not much bigger than n, computing the log-marginal likelihood of the projected data costs at least
O(n) more, so the cost of parametrising the basis H should become insignificant as n grows.

We compare the time it takes to construct the basisH to the total time of a log-marginal likelihood computation for a range of
numbers of data points n and numbers of latent processes m. We use the data from the temperature extrapolation experiment
(Sec. 4.3). The results are depicted in Fig. 9. Observe that, even in the worst case when m = p = 247, parametrising
the basis H takes no more than 1.5% of the total time at n = 100 data points and no more than 0.8% of the total time at
n = 300 data points. This cost is negligible, even in this worst case.

J. Characterisation of Diagonal Projected Noise
Prop. 6 says that the projected noise is diagonal if and only if H is of the form H = Σ

1
2US

1
2 with U a matrix with

orthonormal columns and S > 0 diagonal. This condition is awkward, as it couples H and Σ. Fortunately, Prop. 6 also



shows that we may drop H’s dependency on Σ if and only if every column of U is an eigenvector of Σ.

Prop. 6. The projected noise ΣT is diagonal if and only ifH is of the formH = Σ
1
2US

1
2 with U a matrix with orthonormal

columns and S > 0 diagonal. Suppose that this is the case, and fix such a U . Then H is of the form H = UD
1
2 with D > 0

diagonal if and only if every column of U is an eigenvector of Σ.

Proof. The projected noise is diagonal if and only if HTΣ−1H = S for some S > 0 diagonal. This condition is equivalent
to

S−
1
2HTΣ−

1
2 Σ−

1
2HS−

1
2 = Im,

which, in turn, holds if and only if Σ−
1
2HS−

1
2 = U is a matrix with orthonormal columns. Thus, the projected noise is

diagonal if and only if H is of the form H = Σ
1
2US

1
2 with U a matrix with orthonormal columns and S > 0 diagonal.

For the second statement, note that every column of U is an eigenvector of Σ if and only if it is an eigenvector of Σ
1
2 .

Suppose that H is of the form H = UD
1
2 with D > 0 diagonal. Then

Σ
1
2U = Σ

1
2US

1
2S−

1
2 = HS−

1
2 = UD

1
2S−

1
2 ,

so every column of U is an eigenvector of Σ
1
2 . Conversely, suppose that every column of U is an eigenvector of Σ

1
2 with

eigenvalues stacked into a diagonal matrix D > 0. Then

H = Σ
1
2US

1
2 = UDS

1
2 ,

which is of the desired form.

K. Kullback–Leibler Divergence Between an ILMM and OILMM
Prop. 7. Consider two ILMMs with equal Σ = σ2Ip, equal K(t, t′), but different bases H and Ĥ . Let t1, . . . , tn ∈ T and
denote xi = x(ti) and yi = y(ti). It then holds that

DKL(p(y1:n, x1:n) ‖ p̂(y1:n, x1:n)) = DKL(p̂(y1:n, x1:n) ‖ p(y1:n, x1:n)) = n
1

2σ2
‖H − Ĥ‖2F

and

inf
Ĥ : OILMM

DKL(p(y1:n, x1:n) ‖ p̂(y1:n, x1:n)) ≤ nE[‖f(t)‖2]

σ2
max

i
(1− Vii) ≤ n

E[‖f(t)‖2]

2σ2
‖Im − V ‖2F

where Ĥ ranges over matrices of the form US
1
2 with U a matrix with orthonormal columns and S

1
2 > 0 diagonal, V is the

orthogonal matrix collecting the right singular vectors of H , and E[‖f(t)‖2] denotes the variance of the observations under
the first ILMM before adding noise.

Proof. Start out by expanding the Kullback–Leibler divergence and noting that p(x1:n) = p̂(x1:n):

DKL(p(y1:n, x1:n) ‖ p̂(y1:n, x1:n)) = −Ep(y1:n,x1:n) log
p̂(y1:n |x1:n)����p̂(x1:n)

p(y1:n |x1:n)����p(x1:n)

= −
n∑

i=1

Ep(yi,xi)[log p̂(yi |xi)− log p(yi |xi)]

= −
n∑

i=1

Ep(yi,xi)[logN (yi | Ĥxi, σ2Ip)− logN (yi |Hxi, σ2Ip)].

Here
Ep(yi,xi)[logN (yi | Ĥxi, σ2Ip)] = −p

2
log 2πσ2 − 1

2σ2
Ep(yi,xi)[‖yi − Ĥxi‖2]

where

Ep(yi,xi)[‖yi − Ĥxi‖2] = Ep(yi,xi) tr[yiy
T
i − 2yix

T
i Ĥ

T + xix
T
i ĤĤ

T]

= tr[HHT + σ2I − 2HĤT + ĤĤT]

= pσ2 + tr[(H − Ĥ)(H − Ĥ)T]

= pσ2 + ‖H − Ĥ‖2F .



Therefore,

DKL(p(y1:n, x1:n) ‖ p̂(y1:n, x1:n)) = n
1

2σ2
‖H − Ĥ‖2F .

Let H = USV T be the SVD of H where U is a truncated orthogonal matrix with the same shape as H , S > 0 is a square
diagonal matrix, and V is a square orthogonal matrix. Note that UTU = Im, but UUT 6= Ip. Then, choosing Ĥ = US,

inf
Ĥ : OILMM

DKL(p(y1:n, x1:n) ‖ p̂(y1:n, x1:n)) ≤ n 1

2σ2
‖U(SV T − S)‖2F = n

1

2σ2
‖SV T − S‖2F

since ‖UA‖2F = tr[ATUTUA] = tr[ATA] = ‖A‖2F . We now further simplify:

‖SV T − S‖2F = tr[(SV T − S)(SV T − S)T] = tr[SV TV S − SV TS − SV S + SS] = 2 tr[SS − SV S].

Hence, by definition of the trace and the fact that S is diagonal,

‖SV T − S‖2F = 2

m∑
i=1

S2
ii(1− Vii) ≤ 2

(
m∑
i=1

S2
ii

)
max

i
(1− Vii) = 2E[‖f‖2] max

i
(1− Vii),

since
E[‖f(t)‖2] = E tr[f(t)fT(t)] = tr[HHT] = tr[S2].

Therefore,

‖SV T − S‖2F ≤ 2E[‖f‖2] max
i

(1− Vii) ≤ 2E[‖f‖2]

m∑
i=1

(1− Vii) = E[‖f‖2]‖Im − V ‖2F ,

where the equality follows from a similar calculation:

‖Im − V ‖2F = tr[Im − V T − V + V TV ] = 2 tr[Im − V ].

L. OILMM: Projection and Projected Noise
Prop. 8. Consider the OILMM (Mod. 2). Then the projection and projected noise are given by

T = S−
1
2UT and ΣT = σ2S−1 +D.

Proof. To begin with, note that

y ∼ GP(HK(t, t′)HT + δ[t− t′](σ2Ip +HDHT)

= H(K(t, t′) + δ[t− t′]D)HT + δ[t− t′]σ2Ip,

),

so we can assume that D = 0 by “absorbing it into K(t, t′)”. We then find that

HTΣ−1H = σ−2S,

so
ΣT = TΣT T = (HTΣ−1H)−1 = σ2S−1.

Moreover, then
T = (HTΣ−1H)−1HTΣ−1 = (σ2S−1)(σ−2S

1
2UT) = S−

1
2UT.

Finally, “pull D back out of K(t, t′)”, which we note is equivalent to adding it to ΣT by Prop. 1.



M. OILMM: Likelihood
Prop. 9. Consider the OILMM (Mod. 2). Let Y be an p× n matrix of observations for y. Then

log p(Y ) = −n
2

log |S| − n(p−m)

2
log 2πσ2 − 1

2σ2
‖(Ip −UUT)Y ‖2F +

m∑
i=1

logN ((TY )i: | 0,Ki + (σ2/Sii +Dii)In)

where ‖ • ‖F denotes the Frobenius norm and Ki is the n× n kernel matrix for the ith latent process xi.

Proof. By Prop. 1 and Prop. 4, we have

log p(Y ) = −n(p−m)

2
log 2π − n

2
log
|Σ|
|ΣT |

− 1

2

n∑
i=1

‖(Ip −HT )yi‖2Σ + log

∫
p(x)

n∏
i=1

N (Tyi |xi,ΣT ) dx.

Using the same trick as in the proof of Prop. 8, assume that D = 0 by “absorbing it into K(t, t′)”. We then simplify the
terms one by one. First, we have that

log
|Σ|
|ΣT |

= log
|σ2Ip|
|σ2S−1| = (p−m) log σ2 + log |S|.

Second, note that Ip −HT = Ip − UUT, which we denote by PU⊥ and which is symmetric, so

‖(Ip −HT )yi‖2Σ = ‖PU⊥yi‖2Σ = 〈PU⊥yi,Σ
−1PU⊥yi〉 = σ−2〈PU⊥yi, PU⊥yi〉 = σ−2 tr[PU⊥PU⊥yiy

T
i ].

Then sum over i = 1, . . . , n to obtain

n∑
i=1

‖(Ip −HT )yi‖2Σ = σ−2 tr[PU⊥PU⊥Y Y T] = σ−2‖PU⊥Y ‖2F .

Finally,

log

∫
p(x)

n∏
i=1

N (Tyi |xi,ΣT ) dx =

m∑
i=1

logN ((TY )i: | 0,Ki + (σ2/Sii +Dii)In)

follows from independence of the latent processes and remembering that we “absorbed D into K(t, t′)”.

Observe that

‖(Ip − UUT)Y ‖2F = ‖Y ‖2F − ‖UTY ‖2F ,

which is a computationally more efficient implementation.

N. OILMM: Decomposition of the Mean Squared Error
Prop. 10. Let H = US

1
2 with U a matrix with orthonormal columns and S

1
2 > 0 diagonal. Then

‖y −Hx‖2

MSE

= ‖PU⊥y‖2

data not
captured by basis

+

m∑
i=1

variance of
ith latent process

Sii ((Ty)i − xi)2

MSE of
ith latent process

where T = S−
1
2UT and PU⊥ is the orthogonal projection onto the orthogonal complement of col(U).



Proof. By expanding and using orthogonality of U ,

‖y −Hx‖2 = ‖y‖2 − 2〈y, US 1
2x〉+ ‖US 1

2x‖2

= ‖y‖2 − ‖UTy‖2 + ‖UTy‖2 − 2〈UTy, S
1
2x〉+ ‖S 1

2x‖2

= 〈y, (Ip − UUT)y〉+

m∑
i=1

(〈ui, y〉2 − 2〈ui, y〉S
1
2
iixi + (S

1
2
iixi)

2)

= 〈y, (Ip − UUT)y〉+

m∑
i=1

Sii(S
−1
ii 〈ui, y〉2 − 2S

− 1
2

ii 〈ui, y〉xi + x2
i )

= 〈y, (Ip − UUT)y〉+

m∑
i=1

Sii((Ty)i − xi)2,

where ui is the ith column of U . Note that PU = UUT is the orthogonal projection onto col(U), so I − UUT = PU⊥ is the
orthogonal projection onto the orthogonal complement of col(U). Therefore,

〈y, (Ip − UUT)y〉 = 〈y, PU⊥y〉 = 〈y, P 2
U⊥y〉 = 〈P T

U⊥y, PU⊥y〉 = 〈PU⊥y, PU⊥y〉 = ‖PU⊥y‖2.

O. OILMM: Missing Data
For a matrix or vector A, let Ao and Am denote the rows of A corresponding to respectively observed and missing values.

Prop. 11. Consider the OILMM (Mod. 2). For observed outputs yo, which are a subset of all outputs y, the projection and
projected noise are given by

To = S−
1
2U†o and ΣTo = σ2S−

1
2 (UT

o Uo)−1S−
1
2 +D

where U†o is the pseudo-inverse of Uo.

Proof. Note that

yo ∼ GP(HoK(t, t′)HT
o + δ[t− t′](σ2Io +HoDH

T
o )),

so yo is an ILMM with basis Ho and observation noise σ2I +HoDH
T
o . The proof proceeds like that of Prop. 8, also using

trick of assuming that D = 0 by “absorbing it into K(t, t′)”. To begin with, we have

HTΣ−1H = σ−2S
1
2UT

o UoS
1
2 ,

so

ΣT = TΣT T = (HTΣ−1H)−1 = σ2S−
1
2 (UT

o Uo)−1S−
1
2 .

Moreover, then

T = (HTΣ−1H)−1HTΣ−1 = (σ2S−
1
2 (UT

o Uo)−1S−
1
2 )(σ−2S

1
2UT

o ) = S−
1
2 (UT

o Uo)−1UT
o = S−

1
2U†o .

Finally, “pull D back out of K(t, t′)”, which, again, is equivalent to adding it to ΣT .

Rem. 1. When using To and ΣTo , in the likelihood computation in Prop. 9, from Prop. 4, it can be seen that two things
change: for every time point with missing data,

(1) HoTo = UoU
†
o , so UUT becomes UoU

†
o ; and

(2) 1
2 log |ΣTo | gives an extra term − 1

2 log |UT
o Uo|.



O.1. Diagonal Approximation of Projected Noise

For a matrix A, let d[A] denote the diagonal matrix resulting from setting the off-diagonal entries of A to zero.

Prop. 12. For ΣTo from Prop. 11, we have

‖ΣTo − d[ΣTo ]‖op

‖d[ΣTo ]‖op
≤ Smax

Smin
max

y∈col(H):‖y‖=1
‖ym‖2

where ‖ • ‖op denotes the operator norm, and Smin and Smax are the smallest and largest diagonal values of S.

Proof. Let ei be the ith unit vector. DenoteA = (UT
o Uo)−1, and let λmin and λmax be the minimum and maximum eigenvalue

of A. To begin with,
d[A]ii = 〈ei, Aei〉 ∈ [λmin, λmax].

Let x ∈ Rm be such that ‖x‖ = 1. Then

〈x, (A− d[A])x〉 = 〈x,Ax〉 − 〈x, d[A]x〉 ≤ λmax − λmin.

Similarly,
〈x, (A− d[A])x〉 ≥ −λmax + λmin.

Therefore,
|〈x, (A− d[A])x〉| ≤ λmax − λmin,

so
‖A− d[A]‖op ≤ λmax − λmin

Since S is diagonal, we have
ΣTo − d[ΣTo ] = σ2S−

1
2 (A− d[A])S−

1
2 .

Using the derived bound on the operator norm and submultiplicativity of the operator norm, it follows that

‖ΣTo − d[ΣTo ]‖op ≤ σ2S−1
min(λmax − λmin).

Moreover,

‖d[ΣTo ]‖op = σ2 max
i=1,...,m

(S−1
ii d[A]ii +Dii) ≥ σ2 max

i=1,...,m
S−1
ii d[A]ii ≥ σ2S−1

max max
i=1,...,m

d[A]ii ≥ σ2S−1
maxλmax.

Therefore,
‖ΣTo − d[ΣTo ]‖op

‖d[ΣTo ]‖op
≤ Smax

Smin

(
1− λmin

λmax

)
.

By definition of λmin and λmax and orthogonality of U , we have that

1

λmin
= max

x∈Rm:‖x‖=1
‖Uox‖2 ≤ max

x∈Rm:‖x‖=1
‖Ux‖2 = 1 and

1

λmax
= min

x∈Rm:‖x‖=1
‖Uox‖2.

Substitute these results into the bound:

‖ΣTo − d[ΣTo ]‖op

‖d[ΣTo ]‖op
≤ Smax

Smin

(
1− min

x∈Rm:‖x‖=1
‖Uox‖2

)
=
Smax

Smin
max

x∈Rm:‖x‖=1
(1− ‖Uox‖2).

By orthogonality of U , for x ∈ Rm such that ‖x‖ = 1, we have

1 = ‖x‖2 = ‖Ux‖2 = ‖Uox‖2 + ‖Umx‖2,

so 1− ‖Uox‖2 = ‖Umx‖2. Therefore,

max
x∈Rm:‖x‖=1

(1− ‖Uox‖2) = max
x∈Rm:‖x‖=1

‖Umx‖2 = max
x∈Rm:‖x‖=1

‖(Ux)m‖2 = max
y∈col(U):‖y‖=1

‖ym‖2

and we conclude by noting that col(U) = col(H).



Cor. 1. Suppose ‖U‖2∞ ≤ C/p for some C ≥ 1, and that s outputs are missing. Then

‖ΣTo − d[ΣTo ]‖op

‖d[ΣTo ]‖op
≤ CSmax

Smin

ms

p
.

Proof. Let y ∈ col(H) be such that ‖y‖ = 1. Then y = Ux for some x ∈ Rm such that ‖x‖ = 1. Therefore,

‖ym‖2 =
∑

i∈missing

(Ux)2
i ≤

∑
i∈missing

‖Ui:‖2‖x‖2 =
∑

i∈missing

‖Ui:‖2 ≤
Cms

p
,

so the result follows from the previous proposition.

O.2. Variational Approach

Let Yo be the observed data. Complement Yo with missing data Ym such that Y = Yo ∪ Ym is complete. Then a way to deal
with missing data is to use variational inference. In particular, assume a Gaussian approximate posterior distribution q(Ym)
over Ym, and maximise the evidence lower bound (ELBO) L using gradient-based optimisation:

log p(Yo) ≥ Eq(Ym)[log p(Y )] +H[q(Ym)] = L[q(Ym)],

where the expectation can be approximated using the reparametrisation trick (Kingma & Welling, 2013), log p(Y ) can be
computed efficiently because Y is complete, and H[q(Ym)] denotes the entropy of q(Ym). This approach provides a tractable
solution when the missing data are not too numerous.

P. OILMM: Heterogeneous Observation Noise
Although the specification of the observation noise Σ = σ2Ip +HDHT in the OILMM does not allow for heterogeneous
observation noise, it is possible to set Σ = diag(σ2

1 , . . . , σ
2
p) and use Prop. 6 to include Σ in the parametrisation of H:

H = Σ
1
2US

1
2 . This parametrisation can be interpreted in two ways:

(i) The model has a whitening transform built in. In the projection T , the (noise in the) data will first by whitened by Σ−
1
2 .

Hence, this parametrisation can be used as a more principled substitute for the usual data normalisation where the
outputs are divided by their empirical standard deviation prior to feeding them to the model.

(ii) The basis is orthogonal with respect to a weighted Euclidean inner product: 〈hi, hj〉Σ =
∑p

k=1 hikhjk/σ
2
k = 0 for

i 6= j. Intuitively, this means that the basis is orthogonal in the usual sense after stretching the ith dimension by σ−1
i .

Although this construction provides additional flexiblity, it does require that D = 0 to avoid a circular dependency between
Σ and H .

Q. Computational Scaling Experiment (Sec. 4.1) Additional Details
Measurements were performed using a MacBook Pro with a 2.7 GHz Intel Core i7 processor and 16 GB RAM. Code
was implemented in Julia 1.0 (Bezanson et al., 2017) and memory and time were measured using the @allocated and
the @elapsed macros, respectively, with the measurements averaged over 10 samples run serially. This means memory
reported is the total memory allocated, not peak memory consumption.

R. Point Process Experiment (Sec. 4.2) Additional Details and Analysis
We consider a subset of the extensive rainforest data set credited to Hubbell et al. (2005); Condit (1998); Hubbell et al.
(1999). The data features a 1000 m × 500 m rainforest dynamics plot in Barro Colorado Island, Panama. In the survey area,
the locations of all Trichilia tuberculata (a tree species of the Mahogany family) have been measured (see Fig. 10).

We tackle this spatial point pattern with a log-Gaussian Cox process model, which is an inhomogeneous Poisson process
model for count data. The unknown intensity function Σ(x) is modelled with a Gaussian process such that f(x) = log Σ(x).
Locally-constant intensity in subregions are modelled by discretising the region into np bins (Møller et al., 1998). This
leads to a Poisson observation model for each bin. This model reaches posterior consistency in the limit of bin width going
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Figure 10. Observations of the rainforest tree locations (left), and posterior mean log-intensity for the log-Gaussian Cox process model
(right) with a grid of np = 20000 observation bins.
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Figure 11. (a): Log–joint probability per iteration. (b): Hyperparameters per iteration. Shows the length scale, process variance, and
nugget variance respectively.

to zero (Tokdar & Ghosh, 2007). The accuracy thus improves with tighter binning. We use a separable Matérn-5/2 GP prior
over f(x1, x2), and discretise the area into a n× p = 200×100 (each bin is 5 m × 5 m) grid with np = 20000 grid bins in
total, and treat the first dimension as time. The conditional probability of the complete binned data set given the latent GP is
therefore

p(Y | f) ≈
n∏

i=1

p∏
j=1

Poisson(Yij | aef(rij)),

where rij is the coordinate of the ijth bin, Yij is the number of data points in the ijth bin, Y is the n× p matrix of counts,
and a is the area of each bin.

We perform 105 iterations of block Gibbs sampling, each of which comprises 10 iterations Elliptical Slice Sampling
(Murray et al., 2010; Murray & Adams, 2010) for the Gaussian process given its hyperparameters, and a single iteration of
Metropolis Hastings (Hastings, 1970) with proposal distribution N (θ, 0.052) for the log of the hyperparameters given the
latent GP-distributed function. Each step of Elliptical Slice Sampling requires an additional sample from the GP prior at the
current hyperparameter values, while each step of Metropolis Hastings requires a log marginal likelihood evaluation. As
such approximately 106 samples from the prior were drawn, and 105 log marginal likelihood calculations undertaken. The
kernel is a product of two Matérn-5/2 kernels with a shared length scale. A single process variance is utilised, and a nugget
term is added. The log of each of the three hyperparameters was given a N (0, 1) prior. Fig. 11a shows the log joint of the
entire state after each iteration, while Fig. 11b shows the progress of each hyperparameter per iteration.

The times in Fig. 4 were obtained via BenchmarkTools.jl (Chen & Revels, 2016). The implementation of the standard
Kronecker product decomposition trick makes use of Kronecker.jl, and Julia’s (Bezanson et al., 2017) standard linear
algebra libraries, which make use of OpenBLAS and LAPACK to efficiently perform matrix-matrix products and compute



Table 5. Description of the data points associated with the timing experiment from Fig. 4

LML RNG
n Kronecker OILMM Kronecker OILMM

2000 2.45± 0.0193 0.403± 0.00414 2.45± 0.0278 0.478± 0.00376
1000 0.365± 0.00256 0.0712± 0.000369 0.364± 0.00451 0.0892± 0.000435
200 0.0111± 0.000301 0.00235± 2.53×10−5 0.0112± 9.89×10−5 0.00318± 1.2×10−5

100 0.00237± 8.66×10−6 0.000582± 6.55×10−7 0.00237± 3.1×10−5 0.000792± 8.69×10−7

40 0.00044± 4.35×10−7 0.000109± 2.22×10−7 0.000436± 3.19×10−7 0.000141± 2.0×10−7

20 9.15×10−5 ± 1.48×10−7 2.38×10−5 ± 2.1×10−7 9.06×10−5 ± 1.89×10−7 3.13×10−5 ± 1.72×10−7

10 1.84×10−5 ± 1.54×10−7 9.87×10−6 ± 1.08×10−7 1.84×10−5 ± 3.02×10−7 1.15×10−5 ± 1.17×10−7
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Figure 12. RMSE and PPLP achieved in the temperature extrapolation experiment.

eigendecompositions. The implementation of the state-space GP additionally makes use of StaticArrays.jl for
efficient stack-allocated matrices, and Stheno.jl for GP-related functionality. Timing experiments were conducted on a
single CPU core.

When computing the log marginal likelihood, the state-space implementation of the GP makes use of the infinite-horizon
trick introduced to the GP literature by Solin et al. (2018). However, this trick is only exploited here once the filtering
covariance has converged, which is determined by the point at which the Frobenius norm of the difference between the
filtering covariance at the tth and (t− 1)th iterations drops below 10−12. This produces log marginal likelihood evaluations
and samples from the prior that are exact for all practical purposes.

R.1. Performance versus Kronecker Trick

Fig. 4 demonstrates that, for the particular approach taken to inference in the Poisson process and, importantly, the
dimensions of the data, the Kronecker trick discussed by Saatçi (2012) takes slightly longer to compute log marginal
likelihoods and generate samples than does the OILMM implemented in the manner described above. It would of course be
unreasonable to assert that the OILMM dominates the Kronecker trick; rather, it seems appropriate to assert that they are
competitive with each other in the regime considered.

This is perhaps surprising as the performance of the Kronecker trick is determined almost entirely by a couple of computa-
tionally intensive operations, the eigendecomposition and matrix-matrix multiplies. Carefully optimised implementations of
these operations exist, and were used, to implement the Kronecker trick. Conversely, the OILMM implementation discussed
above comprises many small operations. While our implementation benefits from e.g. the StaticArrays.jl library,
which is suitable for operations on small matrices and vectors, it remains surprising that similar performance was found.

In general we anticipate the OILMM implemented in the described manner be significantly faster on data sets where n is
much larger than p, whilst the Kronecker trick will likely do better when n is similar to p.

S. Temperature Extrapolation Experiment (Sec. 4.3) Additional Results
Fig. 12 depicts the RMSE and PPLP achieved in the temperature extrapolation experiment (Sec. 4.3).



T. Large-Scale Climate Model Calibration Experiment (Sec. 4.6) Additional Details and
Analysis

We use the variational inducing point method by Titsias (2009), where the positions of the inducing points are initialised to
one every two months. All hyperparameters and the locations of the inducing points are optimised until convergence using
scipy’s implementation of the L-BFGS-B algorithm (Nocedal & Wright, 2006), which takes about 4 hours on a MacBook
Pro (2.7 GHz Intel Core i7 processor and 16 GB RAM). The learned length scales were 23.3◦ for latitude and 43.6◦ for
longitude.

Fig. 6a shows the empirical correlations and the correlations learned by the OILMM (derived from Ks). In order to get
insight into the learned correlations, we hierarchically cluster the models using farthest point linkage with 1− |corr.| as the
distance. Fig. 6b shows the resulting dendrogram, in which models are grouped by their similarity. For two models, the
further to the right the branch connecting them is, the less similar the models are.

In Figs. 6a and 6b, HadGEM2 is clearly singled out: it is one of the simplest models, not including several processes that can
be found in others, such as ocean & sea-ice, terrestrial carbon cycle, stratosphere, and ocean biogeochemistry (Bellouin et al.,
2011). Furthermore, if we inspect the names of the simulators in the groups in Fig. 6b, we observe that often simulators of
the same family are grouped together. We observe some interesting cases:

(i) Although IPSL-CM5A-LR and IPSL-CM5A-MR are close, IPSL-CM5B-LR is grouped far apart. It turns out that
IPSL-CM5A-LR and IPSL-CM5A-MR are different-resolution versions of the same model, while IPSL-CM5B-LR
employs a different atmospheric model.5

(ii) ACCESS1.0 and ACCESS1.3 have a similar name, but differ greatly in their implementation: ACCESS1.0 is the
basic model, while ACCESS1.3 is much more aspirational, including experimental atmospheric physics models and a
particular land surface model (Bi et al., 2013).

(iii) The distance between BCC_CSM1.1(m) and BCC_CSM1.1 can be explained by the more realistic surface air tempera-
ture predictions obtained by the former (Wu et al., 2014), which is exactly the quantity we study.

Finally, Fig. 6c shows predictions for four latent processes (is = 1, 2 with ir = 1, 2). The first spatial eigenvector (ir = 1)
is constant in space; combined with the strongest eigenvector of Ks (is = 1), we obtain a strong signal constituting seasonal
temperature changes.

5See https://portal.enes.org/models/earthsystem-models/ipsl/ipslesm.

https://portal.enes.org/models/earthsystem-models/ipsl/ipslesm

